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Abstract. Word processing in machine learning faces several challenges, such as 

language variability, semantic ambiguity, and the need to correctly interpret 

context. These challenges are intensified in spam detection, where attackers use 

sophisticated techniques to evade detection. This study examines the impact of 

poisoning and evasion attacks on machine learning models, highlighting that the 

former have a considerably greater effect. These attacks modify the training data, 

deteriorate the performance of the model and cause systematic errors in the 

predictions. The spam data class is especially affected, which compromises the 

model's ability to detect unwanted emails. For the generation of adversarial 

examples, a DistilBERT classifier was used. The models evaluated included 

AdaBoost, Support Vector Machine and RandomForest. To measure the impact 

of the attacks, metrics such as accuracy, recall, precision and F1-score were 

analyzed. The results showed that the most vulnerable model to these attacks was 

AdaBoost, which initially had an accuracy of 97.8% in classifying spam data. 

However, the poisoning attack turned out to be the most harmful, reducing this 

metric to 69%. This analysis highlights the importance of implementing robust 

defenses against poisoning attacks and developing advanced word-processing 

techniques to maintain the integrity and effectiveness of models in 

adverse environments. 

Keywords: Adversarial machine learning, spam detection, generative 

adversarial example, distilBERT, text classification. 

1 Introduction 

Within the field of cybersecurity, it has been consistently recognized that human beings 

represent the most vulnerable link and the first line of vulnerability in any system. 

Although conventional threats can be assessed and quantified through penetration 

testing, social engineering (SE) poses more subtle and complex challenges. Social 

engineers use various tactics, such as phishing and adware, to manipulate users and 

obtain information voluntarily. In the context of social networks, social engineering 

takes on an appearance that resembles regular publications, albeit with a latent 
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malicious background. Intruders have the ability to impersonate legitimate entities, 

such as banking institutions in order to gain access to accounts or passwords by sending 

spam messages, these attacks usually start with meticulous and planned reconnaissance 

phases. There is little understanding in identifying SE attacks due to the subjectivity of 

social media posts [3]. In addition, it is challenging for a machine to recognize 

sentiments and read between the lines of social posts that may be a SE threat. Common 

network security appliances, such as firewalls, only detect illegitimate traffic at 

flow levels. 

Meanwhile, the Intrusion Detection System (IDS)/Intrusion Prevention System 

(IPS) must be highly customized with intelligent rules to read application data [10]. In 

recent years, there has been much work focused on training deep learning models for 

threat intelligence using network properties, but SE attacks are mostly textual data that 

require integration with Natural Language Processing (NLP) [12]. 

In the fields of security and how to protect Artificial Intelligence (AI) models against 

similar threats, we have to talk about a particular area of Machine Learning (ML), in 

this case it is the Adversarial Machine Learning. When deploying on Machine Learning 

(ML)/Deep Learning (DL) model, it should be expected that the models do not present 

any variability, but this is not true in most cases. This is the central theme of Adversarial 

Machine Learning, which is a branch of ML that tries to find out what attacks a model 

can suffer in the presence of a malicious adversary and how to protect against them. 

There are three types of attacks [4]: 

─ White box attacks: The adversary has access to the architecture used by the model, 

training data, parameters and hyperparameters. 

─ Black box attacks: The adversary only has access to the inputs and outputs of 

the model. 

─ Gray box attacks: The attack is located at an intermediate point between the data 

types of previous attacks. 

Although it is possible to carry out numerous attacks on machine learning models. 

In Adversarial Machine Learning these attacks fall into four categories: poisoning, 

evasion, extraction and inversion [7]. These attacks exploit vulnerabilities inherent in 

ML models, leading to serious consequences in critical applications, such as security, 

health and finance. 

Figure 1 shows a representation of where each attack would influence the lifecycle 

of the ML model, providing a clear view of the critical points of vulnerability. These 

attacks constitute significant threats to the integrity and security of Machine Learning 

Systems. The following are the types of attacks illustrated in Figure 1: 

─ Poisoning Attacks: Poisoning attacks are also known as causative attacks. The 

adversary tries to corrupt the training set with the aim that the learned model 

produces a misclassification that benefits him. This type of attack is carried out in 

the training phase, and it is very difficult to find the underlying vulnerability, since 

it can be transmitted to all models that use these data. This kind of attack can be 

carried out both in white box and black box, and compromises the availability of 

the models. 
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─ Evasion attacks: Evasion attacks are known as exploratory attacks. The goal of the 

adversary is to inject a small amount of noise into the input so that a classifier 

predicts the output (or label) incorrectly. These noisy inputs, called adversary 

examples, can be created on different types of data, with the most widespread and 

well-known examples being images. In fact, adversarial examples of images are 

created so that they are imperceptible to the human eye. 

─ Extraction attacks: Model extraction attacks consist of an adversary trying to steal 

the parameters of a machine learning model. This type of attack allows to 

compromise the intellectual and confidential property of a model, and allows to carry 

out evasion and/or inversion attacks. This attack can be performed in both white box 

and black box. 

─ Inversion attacks: The model inversion attacks, consist in that an adversary trying 

to take advantage of the predictions of the model to compromise the user’s privacy 

or infer whether or not certain data was used in the training set. It can be used in both 

white box and black box. This type of attack is especially relevant among models 

that have been trained with sensitive data such as clinical data, which require 

special protection.  

1.1 Related Works 

In text data, the discrete nature of the inputs makes the gradient-based attack on images 

no longer applicable and forces people to craft discrete perturbations on different 

granularities of text (character-level, word-level, sentence-level, etc.). In this section, 

we introduce the related work in attacking NLP architectures for different tasks [15]. 

The work [1] it is an analysis of the generation of abstracts of scientific articles 

exploring different types of architectures. For this work, 227 NLP articles applied to 

the tourism sector were collected and 3 types of initial representations were tested to 

generate the summaries. One based on the title of the article, another adding keywords 

 

Fig. 1. Classification of adversarial machine attacks. 
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and finally another adding important research data. The results indicate that using a 

method with pre-training, such as GPT-3, can obtain good performance in the task. 

The work [2] focuses on the analysis and classification of a set of texts labeled 

disaster and non-disaster, where those labeled as non-disaster include metaphorical 

context. The classification is focused on classical models, such as RandomForest, 

Support Vector Machine, Decision Tree and XGBOOST. This is achieved using 

SentenceBERT and n-grams as feature extractors, aiming to assess the significance of 

feature selection in identifying relationships between texts and the importance of 

specific words. 

The work Hot-Flip [5] considers replacing a letter in a sentence in order to mislead 

a character-level text classifier (each letter is encoded in a vector). The attack algorithm 

manages to achieve this by finding the most influential letter replacement via gradient 

information. These adversarial perturbations can be noticed by human readers, but they 

do not change the content of the text as a whole, nor do they affect human judgments. 

The work [11] considers manipulating the victim sentence at the word and phrase 

level. They try adding, removing or modifying the words and phrases in the sentences. 

In their approach, the first step is similar to Hot-Flip [5]. For each training sample, they 

find the most influential letters, called “hot characters”. Then, they label words that 

have more than 3 “hot characters” as “hot words”. “Hot words” compose “hot phrases”, 

which are the most influential phrases in sentences. Manipulating these phrases is likely 

to influence the model prediction, so these phrases compose a “vocabulary” to guide 

the attack. When an adversary is given a sentence, he can use this vocabulary to find 

the weakness of the sentence, add one hot phrase, remove a hot phrase in the given 

sentence, or insert a meaningful fact that is composed of hot phrases. 

Deep Word Bug [6] and Text-Bugger [9] are black box attack methods for text 

classification. The basic idea of the former is to define a scoring strategy to identify the 

key tokens that will lead to a wrong prediction of the classifier if modified. Then they 

try four types of “imperceivable” modifications on such tokens: swap, substitution, 

deletion and insertion, to mislead the classifier. The latter follows the same idea, and 

improves it by introducing new scoring functions. 

The works of Samanta and Mehta [13], Iyyer et al. [8] start by crafting adversarial 

sentences that grammarly correct and maintain the syntax structure of the original 

sentence. Samanta and Mehta [13] achieve this using synonyms to replace original 

words, or by adding some words that have different meanings in different contexts. On 

the other hand, Iyyer et al. [8] manage to fool the text classifier by paraphrasing the 

structure of sentences. 

Therefore, this paper analyzes how word processing influences adversary attacks, 

using a SPAM database to create examples of adversaries. Subsequently, these 

examples will be tested with classifiers to perform a poisoning attack and determine if 

they detect them. The objective is to analyze word processing with a focus on creating 

adversarial examples for spam detection models, aiming to cause the most damage with 

the least amount of disturbance. 
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2 Methodology 

In the development of this work, a Kaggle text database was downloaded for further 

analysis and testing [14]. The environment used was Google Colaboratory. To start the 

process, several libraries are used, including NLTK for handling and processing text 

files in Python, as well as Scipy, Scikit-Learn, Numpy and Matplotlib. Once these 

libraries are imported, the file with the text messages is loaded from the local 

environment. The file is analyzed to verify that the database contains texts in English 

and has no empty or null data; in this case, the data set was complete. The database 

consists of two columns: one for messages and one for tags. This particular database 

contains SPAM messages, which are divided into normal messages (Ham) and SPAM 

messages, with 4825 and 747 messages respectively, as shown in Table 1. 

Then the following text preprocessing is performed: a function is applied to convert 

the text to lowercase. The text is divided into a word list. Special characters and empty 

words are removed. Subsequently, the words are reduced to their basic form (for 

example, “running” becomes “run”) and punctuation marks are removed. In Table 2 

you can see how the processed text from the dataset turned out. 

Then, we define a function called make-adversarial that takes a sample of text and 

generates an adversarial version of it. An adversarial sample is a modified version of 

the original text that can change the classification of the machine learning model (for 

example, from “spam” to “ham”).  

The make-adversary function modifies the original text by replacing or deleting 

words to change their classification, thus generating an adversarial version of the text. 

Based on the code suggested by [13], where three different types of modifications 

are proposed to alter a regular entry in an adversarial sample: (i) replacement, (ii) 

insertion and (iii) deletion of words in the text. Its objective is to change the class label 

of the sample by means of a minimum number of alterations. The pseudocode of the 

proposed method is given in Algorithm 1. 

Table 1. Representation of a sample of the dataset. 

Category Message 

Ham So how many days since then? 

Ham Even u dont get in trouble while convincing..j… 

Ham So anyways, you can just go to your gym or wha… 

Spam You have been specially selected to receive a … 

Spam You will be receiving this week’s Triple Echo… 

Table 2. Representation of the processed text. 

Category Message 

Ham mani day sinc 

Ham even u dont get troubl convinc tel twice tel n… 

Ham anyway go gym whatev love smile hope ok good d… 

Spam special select receiv 3000 award call 08712402… 

Spam receiv week triple echo rington shortli enjoy 
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Following the process described in the previous pseudocode, a DistilBERT classifier 

was used to generate adversaries. This model had previously been refined with different 

datasets, different from those of the current project. To configure it, the HuggingFace 

Transformers library was used. DistiBERT has its own tokenizer, which preprocesses 

the texts to adapt them to the model. Since DistilBERT does not support texts larger 

than 512 tokens, a dictionary was established that instructs the tokenizer to trim texts 

 

Fig. 2. Outline of the general process of the stages of elaboration of the project. 

Algorithm 1. Convert the input text s into an adversarial sample 

Require: Sample text –s, Classifier trained for sentiment analysis F. 

1: Find class-label y of the sample s: y ← F(s) 

2: Find contribution 𝐶𝐹 (𝑤𝑖, y) of each word 𝑤𝑖  towards determining the class-label of the 

sample s with the respect to the classifier F. 

3: Rank words according to 𝐶𝐹 (w, y) : w → {𝑤1, 𝑤2, ・ ・ ・ , 𝑤𝑛} where, 𝐶𝐹 (𝑤1, y) > 𝐶𝐹 

(𝑤2, y) > ・ ・ ・ > 𝐶𝐹 (𝑤𝑛, y) 

4: while y does not change do 

5:      if 𝑤𝑖  is an Adverb and 𝐶𝐹 (𝑤𝑖, y) is considerably high then 

6:             Remove 𝑤𝑖 from s 

7:      else 

8:            Consider a candidate pool P = {pk}∀k for 𝑤𝑖 

9:             j ← argmin 𝐶𝐹 (𝑝𝑘, y)∀ 𝑝𝑘 ∈ P 

10:                      k 

11:          if 𝑤𝑖 is Adjective and 𝑝𝑗 is Adverb then 

12:               Add 𝑝𝑗 before 𝑤𝑖 in s 

13:          else 

14:               Replace 𝑤𝑖 with 𝑝𝑗 in s 

15:          end if 

16:     end if 

17:     y ← F(s) 

18:     i ← i + 1 

19: end while 
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to 512 tokens and add padding if necessary, ensuring that all texts are of the same size. 

Subsequently, the SPAM dataset was uploaded. 

The main purpose of the make-adversary function is to generate an adversary text 

from an original text string. To do this, before applying the algorithm that introduces 

the modifications to the text, Spacy is used to preprocess and tokenize the text, 

obtaining a list of Python objects with linguistic information for each token. The spacy-

load command loads a language model included in the library, and the model returns a 

document object. The main idea for creating an adversary is to introduce changes that 

might confuse a classifier trained in sentiment analysis. DistilBERT is trained on an 

SPAM dataset. This classifier makes an initial prediction about the text and the result 

is saved in the sample-class variable. 

Then, for each word, its contribution is calculated, which is obtained by deleting the 

word and using the score returned by the classifier as a contribution measure. The word 

and its contribution are stored in a dictionary in an orderly way. A high contribution 

value is obtained using percentiles of the calculated contributions, in this case 

equivalent to the 90th percentile. Each of the tokens of the text is traversed according 

to its contribution. It is checked if the token is an adverb with a high contribution and 

if so, the token is deleted. Otherwise, a second modification is carried out. As a second 

modification, the token is replaced by some synonym using NLTK. 

The WordNet thesaurus is used to find synonyms for that word. If no synonyms are 

found, the algorithm proceeds with the next word. The best synonym will be stored in 

the variable P. If there is more than one possible synonym, they are all evaluated by 

replacing the word with each synonym and checking the classifier score. The synonym 

that causes the worst score is selected. Then, it is checked whether the original word is 

an adjective and the synonym is an adverb; if so, the synonym is inserted before the 

original word. Otherwise, the synonym replaces the original word. 

Finally, after any modification, it is evaluated whether it causes a change in the 

classifier prediction. If so, the class and the adversary text are returned. If, after making 

all the modifications, the classifier still does not change the class of the original text, 

None is returned, indicating that the text cannot be corrupted. It is important to note 

that the function that creates the adversary dataset uses parallelism. The Python 

multiprocessing library is used, and with the reserved words ”with... as...” a managed 

context is set where the memory used by the pool variable is freed.  

A number of 9 cores and a chunk size of 32 were used. The function ”Pool.imap-

unordered” obtains the results in parallel within an iterator. This function automatically 

distributes the list of texts between the different threads for parallel processing. It is 

observed in Table 3, examples of the adversary dataset that was generated. 
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Figure 2 shows the general process followed in the methodology, as well as the 

procedure used to carry out the poisoning and evasion attacks. The data generated by 

the adversarial example generator was used to execute these attacks. To evaluate the 

behavior of the data, the SVM, Random Forest and Adaboost classifiers were used. 

3 Results 

In this section, it will be explained how the poisoning and evasion attacks were carried 

out with the aim of producing an incorrect classification (see Figure 2). To do this, the 

SVM, Random Forest and AdaBoost models were used, initially, to analyze the 

behavior of these models in the face of this type of disturbances and observe their 

performance. The SVM, Random Forest and Adaboost classifiers were chosen for their 

efficiency and particular characteristics: SVM excels at classifying high-dimensional 

data, Random Forest is robust against disturbances and handles complex data well, and 

Adaboost improves performance by combining several weak models. These models 

make it possible to compare how different classification approaches respond to 

adversary attacks. 

The hyperparameters used were as follows: For SVM, a linear core with a value of 

C=1.0 was used. A number of estimators of 100 and a random state of 42 were used for 

Random Forest. For AdaBoost, it was configured with a number of estimators of 50 

and a random state of 42. First of all, we will describe how the final dataset was formed, 

which contains five columns: the original message, the original tag, the preprocessing 

of the original message, the adversary message and its adversary tag. 

It should be noted that no pre-processing was performed on the adversary message, 

as this could eliminate the noise that had been included in said message, therefore, this 

option was discarded. Classes are represented, 0 is not spam and 1 is spam. The data 

set was divided into 80% for training and 20% for testing, and a 42 seed was established 

Table 3. Examples of Dataset with the adversary text. 

Category 1 Message-G 

Spam urgent! call-option 09066350750 from your land… 

Ham live you uncommitted for soirée along June third? 

Ham Or just brawl that 6times 

Ham That make-up random watch my honest-to-god roo… 

Ham mail ME ir emasinglel singlecalciferol soon 

Table 4. Results with the original data with the test set. 

Model Accuracy Precision Recall F1-Score Class 

SVM 0.9865470 0.99 1.00 0.99 0 

SVM 0.9865470 0.99 0.92 0.95 1 

RandomForest 0.9793721 0.98 1.00 0.99 0 

RandomForest 0.9793721 1.00 0.86 0.93 1 

AdaBoost 0.9784753 0.98 0.99 0.99 0 

AdaBoost 0.9784753 0.96 0.90 0.93 1 
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for random status. Tables 4 and 5 show the results of the training of the non-

attack models. 

From Tables 4 and 5, it is concluded that SVM maintains a very high performance 

in both data sets, with an overall accuracy close to 99%. Random Forest also shows a 

high performance, which improves slightly with the pre-processed data, suggesting that 

it is sensitive to pre-processing and improves its generalizability. On the other hand, 

AdaBoost shows a slight decrease in accuracy with pre-processed data, indicating that, 

although it is robust, it is more sensitive to variations in the data.  

Text preprocessing seems to have a positive or neutral effect on the performance of 

SVM and Random Forest, while for AdaBoost, the performance decreases slightly with 

preprocessed data. This suggests that SVM and Random Forest are more resistant to 

changes in input data, while AdaBoost may be more sensitive to text preprocessing. 

The impact of text preprocessing varies between models: SVM shows high and 

consistent performance on both data sets, suggesting that preprocessing can be 

beneficial by maintaining accuracy and consistency.  

Random Forest experiences a slight improvement with pre-processing, indicating 

better management of the text features after the initial processing. In contrast, AdaBoost 

exhibits a decrease in performance with pre-processed data, suggesting a possible loss 

of crucial information during the pre-processing process. 

To analyze the poisoning attack, the variables of the original message with its 

preprocessing and the adversary message were concatenated into a single column. The 

same procedure was also performed for the labels. The results obtained are shown in 

Table 6. The results obtained by applying the poisoning attack to the dataset show a 

significant decrease in the performance of all models compared to the original or pre-

processed data. The poisoning attack has significantly degraded the performance of all 

models, especially affecting the ability to correctly identify class 0 examples.  

SVM and Random Forest show greater comparative resilience, maintaining a better 

performance in class 1, while AdaBoost is the most vulnerable to attack, with a more 

pronounced drop in its overall performance. These results underscore the importance 

of considering robustness against poisoning attacks when selecting or designing models 

for critical tasks. 

Table 5. Results with pre-processed data with the test set. 

Model Accuracy Precision Recall F1-Score Class 

SVM 0.9874439 0.99 1.00 0.99 0 

SVM 0.9874439 1.00 0.92 0.96 1 

RandomForest 0.9802690 0.98 1.00 0.99 0 

RandomForest 0.9802690 1.00 0.87 0.93 1 

AdaBoost 0.9704035 0.97 0.99 0.98 0 

AdaBoost 0.9704035 0.95 0.85 0.90 1 
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The analysis of the evasion attack consisted of introducing a small amount of noise 

at the entrance. In this case, the original labels were used to observe if there was any 

disturbance in the results, achieving an incorrect prediction as can be seen in Table 7. 

The results obtained after applying the evasion attack to the dataset indicate that, 

despite the disturbances designed to evade detection, the models maintain a relatively 

high performance. All models retain high accuracy, which suggests remarkable 

robustness against this type of attack. However, a slight decrease in performance is 

observed for Class 1 in all models, particularly in Random Forest and AdaBoost. This 

suggests that the evasion attack has a more significant impact on the classification of 

certain examples, although not critically. In summary, the models are still effective 

against evasion attacks, but they present a slight vulnerability that could be exploited 

under certain conditions. 

4 Conclusion 

In this paper, the study has shown that, under normal conditions, the SVM, Random 

Forest and AdaBoost models exhibit outstanding performance in terms of accuracy, 

Recall and F1-Score. These models show high effectiveness in class detection without 

the influence of adversary attacks. SVM stands out for its consistency and accuracy 

close to 99%, while Random Forest and AdaBoost also present solid performance, 

although with some variations depending on data preprocessing. However, SVM and 

Random Forest show greater robustness and consistency against adversary attacks 

compared to AdaBoost.  

All models suffer a decrease in performance when faced with poisoning and evasion 

attacks. The results suggest that SVM and Random Forest have a greater ability to 

maintain their accuracy and generalization in adverse conditions, while AdaBoost, 

although effective in normal scenarios, needs improvements to more effectively handle 

Table 6. Results by applying the poisoning attack to the dataset. 

Model Accuracy Precision Recall F1-Score Class 

SVM 0.7354260 0.76 0.41 0.54 0 

SVM 0.7354260 0.73 0.92 0.82 1 

RandomForest 0.7479820 0.81 0.41 0.55 0 

RandomForest 0.7479820 0.73 0.94 0.83 1 

AdaBoost 0.6905829 0.66 0.32 0.44 0 

AdaBoost 0.6905829 0.70 0.90 0.79 1 

Table 7. Results by applying the evasion attack to the dataset. 

Model Accuracy Precision Recall F1-Score Class 

SVM 0.9883408 0.99 1.00 0.99 0 

SVM 0.9883408 0.99 0.93 0.96 1 

RandomForest 0.9748878 0.97 1.00 0.99 0 

RandomForest 0.9748878 1.00 0.83 0.91 1 

AdaBoost 0.9757847 0.98 0.99 0.99 0 

AdaBoost 0.9757847 0.94 0.90 0.92 1 
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adversary attacks. These findings highlight the importance of developing additional 

mitigation and robustness methods to face adversary attacks in classification systems, 

with the aim of improving the security and stability of the models in real environments.  

In addition, poisoning attacks have a significantly greater impact on machine 

learning models compared to evasion attacks. Poisoning attacks directly alter the 

training data, degrading the overall performance of the model and leading to systematic 

errors in its predictions. These attacks manipulate training data, making the model less 

effective at identifying unwanted emails and negatively affecting its accuracy and 

detection ability.  

In future work, the creation of a generative adversary text model of its own will be 

explored and more classification models will be analyzed to assess its vulnerability to 

these attacks. 
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